Green Biosynthesis of Silver Functionalized Multi-Walled Carbon Nanotubes, Using Satureja Hortensis L Water Extract and Its Bactericidal Activity

Document Type : Original Research Paper


Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran


Green biosynthesis of silver - functionalized multiwalled carbon nanotube (Ag/FMWCNT) nanohybride from silver nitrate solution using water extract of Satureja hortensis L as reducing agent and FMWCNT as anchoring agent at room condition was succesfully carried out. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles The synthesized nanocomposite were characterized using ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The UV-Vis spectra of the Ag/FMWCNT nanocomposite showed absorption peak at around 401 nm. SEM and TEM studies showed that the average particles size of Ag/FMWCNT nanocomposite were about 16.05 nm and also XRD patterns indicated that the structure of the nanocomposite is face-centered cubic. The antibacterial effects of Ag/FMWCNT on Gram positive and Gram negative bacteria were also performed.


1. Beguin F, Szostak K, Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 2005;17:2380–4.
2. Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 2005;50:2499–506.
3. Qin X, Durbach S, Wu GT. Electrochemical characterization on RuO2 Æ xH2O/carbon nanotubes composite electr
4. M. L. Chen,;, J. S.; Oh, W. C Bae. Korean Bull. Chem. Soc, 27(2006) 1423
5. K, Shameli.,  M.B, Ahmad,  M.  Zargar;. Int J Nanomedicine, 6(2011)581.
6.  A.  Gupta,  M.  Maynes,  S.  Silver,  Applied  and  Environment  Microbiology  64  (1998) 5042.
 7.  S.  Pal,  Y.K.  Tak,  J.M.  Song,  Applied  Environmental  Microbiology  27  (2007)  1712
 8.  D.  Fortin,  T.J.  Beveridge,  From  Biology  to  Biotechnology  and  Medical  Applications, Wiley-VCH,  Weinheim,  Germany,  2000.
9.  T.  Klaus,  R.  Joerger,  E.  Olsson,  C.G.  Ranqvist,  Proceedings  of  the  National  Academy
of  Sciences  96  (1999)  13611.
10.  N.  Duran,  P.D.  Marcato,  O.L.  Alves,  G.I.  Souza, E.  Esposito, Nanobiotechnology 3 (2005)  8.
11.  R.Y.S.  Parikh,  S.  Singh,  B.L.V.  Prasad,  M.S.  Patole,  M.  Sastry,  Y.S.  Shouche,  ChemBioChem  9  (2008)  1415.
12.  N.  Pugazhenthiran,  S.  Anandan,  G.  kathiravan,  N.K.  Udaya  prakash,  S.  Crawford,  N.
Ashokkumar,  Nanoparticle  Research  11  (2009)  1811
13.  N.  Dura´n,  P.D.  Marcato,  G.I.H.  De  Souza,  L.O.  Alves,  E.  Elisa  Esposito,  Biomedical Nanotechnology  3  (2007)  203.
14. S Sedaghat, Fullerenes, Nanotubes and Carbon Nanostructures 23(2014) 483.
15.  S.  Schultz,  D.R.  Smith,  J.J.  Mock,  D.A.  Schultz,  Proceedings  of  the  National  Academy
of  Sciences  97  (2000)  996.
16. P. Perugini, S. Simeoni, S. Scalia, I. Genta, T. Modena, B. Conti, F. Pavanetto, International Journal of Pharmaceutics 246  (2002) 37.
17. S. Jin, K. Ye, Biotechnology Progress 23 (2007) 32
18. Parvin Afsharand SajjadSedaghat, Bio-synthesis  of  Silver  Nanoparticles  Using  Water  Extract  of Satureja