Buckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)

Document Type: Original Research Paper

Authors

1 Department of Mathematics, Baneh Branch, Islamic Azad University, Baneh, Iran

2 Department of Applied Mathematics, Imam Khomeini International University, Qazvin, Iran

3 Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

4 Department of Basic Sciences, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran

Abstract

The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. This general type for the nano-actuators is a non-linear fourth-order Fredholm integro-differential boundary value problem. The point interpolation method with the help of radial basis functions is used to construct shape functions which play as basis functions in the frame of SMRPI. In the current work, the thin plate splines (TPSs) are used as radial basis functions. This numerical based technique enables us to overcome all kind of nonlinearities in the mentioned boundary value problem and then to obtain fast convergent solution. Thus, it can facilitate the design of nano-actuators.

Keywords


1. S. Abbasbandy, H. Roohani Ghehsareh, I. Hashim, and A Alsaedi. Engineering Analysis with Boundary Elements, 47:10–20, 2014.

2. B. Abbasnejad, Gh. Rezazadeh, and Rasool Shabani. Acta Mechanica Solida Sinica, 26(4):427–440, 2013.

3. E.M. Abdel-Rahman, M.I. Younis, and A.H. Nayfeh. Journal of Micromechanics and Microengineering, 12(6):759, 2002.

4. G. Adomian. Solving frontier problems of physics: the decomposition method, volume 60.  Springer Science & Business Media, 2013.

5.  R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and S. Sahmani. Acta Astronautica, 102:140 150, 2014.

6.  Mohammad Aslefallah and Elyas Shivanian. The European Physical Journal Plus, 130(3):1–9, 2015.

7.  Z. Avazzadeh, V.R. Hosseini, and W Chen. Iranian Journal of Science and Technology (Sciences), 38(3):205–212, 2014.

8.  W Chen, Z-J Fu, and C-S Chen. Recent advances in radial basis function collocation methods.  Springer, 2014.

9.  B. Choi and EG Lovell. Journal of Micromechanics and Microengineering, 7(1):24, 1997.

10.  M. Dehghan and A. Ghesmati. Computer Physics Communications, 181(4):772–786, 2010.

11.  M. Dehghan and D. Mirzaei. Applied Numerical Mathematics, 59(5):1043–1058, 2009.

12.  GE Fasshauer and H Wendland.  Scattered data approximation, 2006.

13.  A. Fili, A. Naji, and Y. Duan.   Journal of Computational and Applied Mathematics, 234(8):2456–2468, 2010.

14.  B. Fornberg and N. Flyer.   A primer on radial basis functions with applications to the geosciences, volume 87.  SIAM, 2015.

15.  B. Fornberg and N. Flyer.   Acta Numerica, 24:215–258, 2015.

16.  Bai Fu-Nong, Li Dong-Ming, W. Jian-Fei, and Cheng Yu-Min.   Chinese Physics B, 21(2):020204, 2012.

17.  Y Gerson, I Sokolov, T Nachmias, BR Ilic, S Lulinsky, and S Krylov.   Sensors and Actuators A: Physical, 199:227–235, 2013.

18. M. Ghalambaz, M. Ghalambaz, and Mohammad Edalatifar.   Applied Mathematical Modelling, 40(15):7293–7302, 2016.

19. V.R. Hosseini, W. Chen, and Z. Avazzadeh.   Engineering Analysis with Boundary Elements, 38:31–39, 2014.

20. V. R. Hosseini, E. Shivanian, and W. Chen.   The European Physical Journal Plus, 130(2):1–21, 2015.

21.  V. R. Hosseini, E. Shivanian, and W. Chen.   Journal of Computational Physics, 312:307–332, 2016.

22.  YC Jiao, Y. Yamamoto, C. Dang, and Y. Hao.   Computers & Mathematics with Applications, 43(6-7):783–798, 2002.

23. A. Koochi, H. Hosseini-Toudeshky, H.R. Ovesy, and Mohamadreza Abadyan.   International Journal of Structural Stability and Dynamics, 13(04):1250072, 2013.

24. A. Koochi, A. Kazemi, F. Khandani, and M. Abadyan.   Physica Scripta, 85(3):035804, 2012.

25. A. Koochi, A. Sadat Kazemi, Y. Tadi Beni, A. Yekrangi, and M. Abadyan.   Physica E: Low-dimensional Systems and Nanostructures, 43(2):625–632, 2010.

26. J-H Kuang and C-J Chen.   Mathematical and computer modelling, 41(13):1479–1491, 2005.

27. S. Liao.   Homotopy analysis method in nonlinear differential equations.  Springer, 2012.

28. B Nayroles, G Touzot, and P Villon.   Computational mechanics, 10(5):307–318, 1992.

29. A. Noghrehabadi, M. Ghalambaz, and Afshin Ghanbarzadeh.   Computers & Mathematics with Applications, 64(9):2806–2815, 2012.

30. M. Peng, D. Li, and Y. Cheng.   Engineering Structures, 33(1):127–135, 2011.

31. A Shirzadi and F Takhtabnoos.   Inverse Problems in Science and Engineering, 24(5):729–743, 2016.

32. E. Shivanian, S. Abbasbandy, M.S. Alhuthali, and H.H. Alsulami.   Engineering Analysis with Boundary Elements, 56:98–105, 2015.

33. E. Shivanian.   Engineering Analysis with Boundary Elements, 37(12):1693–1702, 2013.

34. E. Shivanian.   Engineering Analysis with Boundary Elements, 54:1–12, 2015.

35. E. Shivanian.   International Journal for Numerical Methods in Engineering, 105(2):83–110, 2016.

36. E. Shivanian and A. Jafarabadi.   Engineering Analysis with Boundary Elements, 72:42–54, 2016.

37. E. Shivanian and HR Khodabandehlo.   Ain Shams Engineering Journal, 2015.

38. E. Shivanian.   Engineering Analysis with Boundary Elements, 50:249–257, 2015.

39. R. Soroush, A. Koochi, A. Sadat Kazemi, and M. Abadyan.   International Journal of Structural Stability and Dynamics, 12(05):1250036, 2012.

40. A. Tadeu, CS Chen, J. António, and N. Simoes.   Advances in Applied Mathematics and Mechanics, 3(05):572–585, 2011.

41. A-M Wazwaz.   Applied Mathematics and Computation, 161(2):543–560, 2005.

42. E. Yazdanpanahi, A. Noghrehabadi, and M. Ghalambaz.   International Journal of Non-Linear Mechanics, 58:128–138, 2014.