Synthesize and characterization of hollow and core/shell based on CeO2 as a alcohol sensor

Document Type: Original Research Paper

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, 3319118651 ,Iran.

3 Department of Chemistry, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, 3319118651 ,Iran

Abstract

In this study, CeO2 hollow spherical nanoparticles, CeO2/SiO2 @ CeO2 core/shell composites, and hollow CeO2/SiO2 sensors were synthesized and their microstructures were researched by FT-IR, XRD, FESEM, EDX and BET analyses. The peaks observed in the FT-IR spectra of the synthesized samples corresponded to Ce-O stretching vibration (ca. 566 cm-1) and O-Si-O bending vibration (ca. 470 cm-1). XRD diffraction patterns showed peaks at 2θ values in the 28.95° , 33.74°, 47.75° , 57.04°, 59.52° ,and 69.4° confirming cubic phase of CeO2. The FESEM images showed that the particle shape was approximately spherical. The results of BET showed that, surface area of the CeO2 hollow spherical nanoparticles, CeO2/SiO2 @ CeO2 and hollow CeO2/SiO2 core/shell particles were 102.78 m2/g, 80.49 m2/g, and 119.71 m2/g, respectively. The nanosized metal oxides were used to quantitatively and qualitatively identify 1-propanol, 2-propanol, ethanol and methanol. The results showed that, the hollow CeO2/SiO2 core/shell was of larger potentials for qualitative identification of 1-propanol and quantitative measurement of 2 -propanol and ethanol.

Keywords