A theoretical study of the influence of solvent polarity on the structure and spectral properties in the interaction of C\textsubscript{20} and Si\textsubscript{2}H\textsubscript{2}

Zahra Kazemi1, Reza Ghiasi2,, Saeid Jamehbozorgi3

1 Department of chemistry, faculty of science, Arak branch, Islamic Azad University, Arak, Iran
2 Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
3 Department of chemistry, faculty of science, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Received: 2019-01-04 Accepted: 2019-03-05 Published: 2019-05-10

ABSTRACT

In this investigation, the interaction of C\textsubscript{20} and Si\textsubscript{2}H\textsubscript{2} molecules was explored in the M06-2X/6-311++G(d,p) level of theory in gas solution phases. The obtained interaction energy values with standard method were corrected by basis set superposition error (BSSE) during the geometry optimization for all molecules at the same level of theory. Also, the bonding interaction between the C\textsubscript{20} and Si\textsubscript{2}H\textsubscript{2} fragments was analyzed by means of the energy decomposition analysis (EDA). The results obtained from these calculations reveal interaction between C\textsubscript{20} and Si\textsubscript{2}H\textsubscript{2} increases in the presence of more polar solvents. There are good correlations between these parameters and dielectric constants of solvents. The wavenumbers of IR-active, symmetric and asymmetric stretching vibrations of Si-H groups and 29Si NMR chemical shift values in different solvents were correlated with the Kirkwood–Bauer–Magat equation (KBM).

Keywords: C\textsubscript{20} cage, C\textsubscript{20}...Si\textsubscript{2}H\textsubscript{2} molecules, energy decomposition analysis (EDA), solvent effect, Kirkwood–Bauer–Magat equation (KBM)

© 2019 Published by Journal of Nanoanalysis.

INTRODUCTION

Many theoretical and experimental studies have been reported about the structure and properties of C\textsubscript{20} molecule [1-6]. C\textsubscript{20} molecule is potentially the smallest fullerene. The synthesis and characterization of this molecule have been performed in the gas phase [7]. The notable structure of C\textsubscript{20} has been the question of numerous theoretical researches [8, 9]. Fullerenes are considered as promising candidates for basic elements in nanoscale devices, and several instances of fullerene-based devices have been already considered both experimentally and theoretically [10, 11]. Modification of C\textsubscript{20} is a matter of common attention for experimentalists and theoreticians to seem into the structure as well as electronic properties. The structure and properties of fullerene C\textsubscript{20} and its derivatives C\textsubscript{20}(C\textsubscript{2}H\textsubscript{2})\textsubscript{n} and C\textsubscript{20}(C\textsubscript{2}H\textsubscript{4})\textsubscript{n} (n=1–4) have been explored [11], and illustrated that the most stable fullerene C\textsubscript{20} and its derivatives C\textsubscript{20}(C\textsubscript{2}H\textsubscript{2})\textsubscript{n} and C\textsubscript{20}(C\textsubscript{2}H\textsubscript{4})\textsubscript{n} (n=1–3) reveal significant aromaticity, while C\textsubscript{20}(C\textsubscript{2}H\textsubscript{4})\textsubscript{4} and C\textsubscript{20}(C\textsubscript{2}H\textsubscript{2})\textsubscript{4} have no spherical aromaticity. Furthermore, heteroatom impacts on structure, stability and aromaticity of X\textsubscript{n}C\textsubscript{20-n} fullerenes have been established [12]. The interaction of C\textsubscript{20} with N\textsubscript{2}X\textsubscript{2} (X=H, F, Cl, Br, Me) has been investigated theoretically [13]. Also, theoretical study of solvent effect on the interaction of C\textsubscript{20} and N\textsubscript{2}H\textsubscript{2} has been reported [14].

The synthesis and characterization of several homonuclear combinations –Si=Si- have been investigated [15-17]. The large number of reviews...
published during the past decade reflects the progress in this field [18-20]. Their Lewis acidic character has been supported by the reactions of REER (E= Si, Ge, Sn) with R’NC (R’ = But, Mesitylene, SiMe3) [21-23]. Also, reactivity of a disilene RsSiSiR (R= SiPr(2CH(SiMe3)2)) toward π-Bonds has been investigated [24].

Solvent exhibits significant role in physical and chemical processes. The presence of specific and non-specific interactions between the solvent and the solute molecules is responsible for the change in several properties such as molecular geometry, the electronic structure and dipole moment of the solute [14, 25-34].

Numerous experimental and theoretical investigations have been reported about adsorption of ethylene (C2H4) and acetylene (C2H2) at various surfaces [35-37]. Many investigations have been exploring the more reactivity of the π bond of the disilenes toward many reagents, rather than alkenes and alkynes. This increase reactivity attributed to the relatively small HOMO-LUMO gap and its biradical character [38]. For instance, smooth [2 + 2] cycloadditions of the π bond of disilenes toward alkenes and alkynes to give the disilacyclobutane and disilacyclobutene derivatives, respectively [39, 40]. Furthermore, there are much less reports about the π bond nature of disilynes with a silicon-silicon triple bond, which has two clear π bonds (πin and πout) [15, 41-43], although small number researches have reported about the reactivity of alkyne analogues [22, 44, 45]. An evaluation of the chemical behavior of heavier group 14 element alkyne analogues with that of alkynes has special attention [22, 46, 47].

In the basis of the extensive attentions on the nature of alkene analogues of silicon, we are interested in the theoretical study of interaction fullerene C20 with Si2H2 in both gas and solution phases. Experimental study has not reported about the interaction between C20 and Si2H2 yet. Therefore, theoretical study and the effective factors of this interaction are attractive for us. The structure, frontier orbital analysis, selected IR-active vibration, thermochemical parameters and 29Si NMR chemical shift of the C20...Si2H2 have been explored. In addition, the influence of the solvent on the structural properties of C20...Si2H2 molecule will be evaluated.

COMPUTATIONAL METHODS

All calculations were carried out with the Gaussian 09 suite program [48]. The calculations of systems contain C, Si and H described by the standard 6-311++G(d,p) basis set [49-52]. Geometry optimization was performed utilizing with the hybrid functional of Truhlar and Zhao (M06-2X) [53].

A vibration analysis was performed at each stationary point found, that confirm its identity as an energy minimum.

The interaction energy, I.E, can be evaluated from the difference between energy of the molecule and sum of the energies of the C20 and Si2H2:

\[
I.E = E(C_{20}\ldots Si_{2}H_{2}) - [E(C_{20})+ E(Si_{2}H_{2})]
\]

The calculated interaction energies have corrected for basis set superposition errors (BSSE), which were computed for all calculations using the counterpoise correction method of Boys and Bernardi [54]. This error is owing to the different number of basis functions included in the molecule and monomer calculations. Since the molecule employs a basis set larger than the one employed by monomers, in most cases this error models the molecule to be too attractive. As it has been studied before, when BSSE is corrected along the whole surface, important changes in the potential energy surface appear, not only in the energy, but also in the position of the minimum as well as its topology [55, 56].

We have studied the solvation effects by using self-consistent reaction field (SCRF) approach, in particular using the polarizable continuum model (PCM) [57].

The GaussSum 3.0 software package was used to evaluate the detailed analysis of the atomic orbitals contributions to the complex [58].

Chemical shift values are calculated using the Gauge independent atomic orbital (GIAO) method at the same method and basis sets of optimization [59].

The bonding interactions between the C20 and Si2H2 fragments have been analyzed by means of the energy decomposition analysis implemented in Multiwfn 3.3.5. package [60]. In this method, the instantaneous interaction energy (Eint) between the two fragments can be divided into three main components:

\[
\Delta E_{\text{int}} = \Delta E_{\text{polar}} + \Delta E_{\text{el}} + \Delta E_{\text{Ex}}
\]

\[
E_{\text{polar}} = E(\text{SCF last}) - E(\text{SCF 1st})
\]

\[
E_{\text{el}} = E(\text{SCF last}) - E(\text{SCF 1st})
\]

\[
E_{\text{Ex}} = E(\text{SCF last}) - E(\text{SCF 1st})
\]
RESULTS AND DISCUSSION

Interaction energies

The computed interaction energies (I.E) for the C_{20}…Si_{2}H_{2} molecule (Fig. 1) in the gas phase and various solvents have been gathered in Table 1. The comparison of interaction energy value in gas phase and solution phase show more interaction between C_{20} and Si_{2}H_{2} in solution phase. It can be expected that interaction between C_{20} and Si_{2}H_{2} increases in the presence of more polar solvents. There is a good linear correlation between interaction energy values and dielectric constants of solvents:

\[I.E = -0.039 \varepsilon - 99.34; \quad R^2 = 0.983 \]

Where, \(\varepsilon \) is the dielectric constant of solvent.

The interaction energy in gas phase was corrected by the BSSE. The uncorrected and corrected by BSSE of interaction energies is -98.78 kcal/mol and -96.45 kcal/mol, respectively.

The nature of the C…Si chemical bond in the C_{20}…Si_{2}H_{2} molecule has been investigated using an energy decomposition analysis (EDA). These calculations show that the total interaction energy between C_{20} and Si_{2}H_{2} is -98.78 kcal/mol. Also, EDA calculations reveal that the polarization energy (-198.62 kcal/mol) stabilized the C_{20}…Si_{2}H_{2} adduct, whereas the sum of electrostatic and exchanging energy destabilized the adduct by 99.84 kcal/mol.

Solvation energies

The stabilization energies by solvents (solvation energy, \(E_{solv} \)) have been calculated (Table 1). These values are the relative energy of the title compound in a solvent to that in the gas phase. As we can see the solvation energies are dependent on the size of the dielectric constant of solvents, and these values decrease with the increase of dielectric constants of solvents. As a result, the stability of C_{20}…Si_{2}H_{2} molecule increases in more polar solvents. This is because a dipole in the molecule will induce a dipole in the medium, and the electric field applied to the solute by the solvent (reaction) dipole will in turn interact with the molecular dipole to result in net stabilization. Hence, C_{20}…Si_{2}H_{2} molecule has more stability in polar solvent rather than in non-polar solvents.

![HOMO and LUMO plots](Fig. 1. The plots of frontier orbitals of C_{20}…Si_{2}H_{2} molecules.)

Table 1. Dielectric constant of solvents, total energy (in a.u), interaction energy (in kcal/mol), solvation energy (in kcal/mol), dipole moment (in Debye) values of C_{20}…Si_{2}H_{2} molecule in gas and solution phases in M06-2X/6-311+G(d,p) level of theory.

<table>
<thead>
<tr>
<th>X</th>
<th>(\varepsilon)</th>
<th>(E(C_{20}…Si_{2}H_{2}))</th>
<th>(E_{solvation})</th>
<th>(E_{int})</th>
<th>(\mu_{tot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas</td>
<td>-</td>
<td>-1341.5288</td>
<td>-98.78</td>
<td>-</td>
<td>4.44</td>
</tr>
<tr>
<td>Chloroform</td>
<td>4.71</td>
<td>-1341.5324</td>
<td>-99.51</td>
<td>-2.25</td>
<td>6.31</td>
</tr>
<tr>
<td>chlorobenzene</td>
<td>5.70</td>
<td>-1341.5326</td>
<td>-99.58</td>
<td>-2.43</td>
<td>6.47</td>
</tr>
<tr>
<td>THF</td>
<td>7.58</td>
<td>-1341.5330</td>
<td>-99.65</td>
<td>-2.65</td>
<td>6.65</td>
</tr>
<tr>
<td>DiMethylDiSulfide</td>
<td>9.60</td>
<td>-1341.5333</td>
<td>-99.72</td>
<td>-2.82</td>
<td>6.80</td>
</tr>
<tr>
<td>DiChloroEthane</td>
<td>10.13</td>
<td>-1341.5333</td>
<td>-99.73</td>
<td>-2.85</td>
<td>6.83</td>
</tr>
</tbody>
</table>

J. Nanoanalysis., 6(2): 121-128, Spring 2019
the gas phase. There is a good correlation between dielectric constants and E_{solv}:

$$E_{\text{solv}} = -0.107 \varepsilon - 1.789; R^2 = 0.979$$

Geometrical parameters

Selected geometrical parameters of $C_{20}\ldots Si_2H_2$ molecule are given in Table 2. These values show that Si-C and Si-Si distances increase in solution rather than to that in the gas phase. On the other hand, these values are dependent on the size of the dielectric constant of solvents, and these values increase with the increase of dielectric constants of solvents. There is a good correlation between these parameters and dielectric constants:

$$r(\text{SiSi}) = 5 \times 10^{-5} \varepsilon + 2.132; R^2 = 0.988$$
$$r(\text{SiC}) = 8 \times 10^{-5} \varepsilon + 1.914; R^2 = 0.979$$

Also, the comparison of interaction energy value in gas phase and solution phase and SiC distances show that SiC distance decrease with the decrease of interaction energies. There is a good correlation between interaction energy and SiC distances:

$$r(\text{SiC}) = -379.0 \text{ I.E} + 626.1; R^2 = 0.998$$

Dipole moments

The dipole moments of $C_{20}\ldots Si_2H_2$ molecule in gas phase and different solvents are given in Table 2. Inclusion of solvation effects leads also to changes on the molecular orbital energies (Table 2). In solution, HOMO and LUMO are destabilized, with respect to the corresponding values in a vacuum. A good relationship exists between frontier orbitals energies and polarity of solvents:

$$E(\text{HOMO}) = -5 \times 10^{-4} \varepsilon - 0.248; R^2 = 0.988$$
$$E(\text{LUMO}) = 5 \times 10^{-2} \varepsilon - 0.088; R^2 = 0.972$$

Also, HOMO-LUMO gap of $C_{20}\ldots Si_2H_2$ molecule in solution phase is more than that of gas phase. A good relationship exists between HOMO-LUMO gap and polarity of solvents:

$$\text{Gap} = 0.002 \varepsilon + 4.352; R^2 = 0.981$$

The variations in this property may be illustrated by considering the fact that neutral or charged species enhance their effective radii in solution phase. This signifies that the electrostatic potential q/r will forever diminish from gas phase to solution phase. As a result, solvated species will reduce their effective hardness and subsequently, and become softer in the solution phase [61].

The frontier orbitals distribution of $C_{20}\ldots Si_2H_2$ molecule is plotted in Fig. 1. Fig. 1 presents the HOMO and LUMO are distributed mainly on C_{20}. Percentage composition in terms of the defined groups of frontier orbitals illustrates the largest contributions of HOMO and LUMO arise from cage (97.0% and 89.0%, respectively).

Molecular orbital analysis

The energies of the frontier orbitals (HOMO, LUMO) along with the corresponding HOMO-LUMO energy gaps for of $C_{20}\ldots Si_2H_2$ molecule in gas phase and different solvents are given in Table 2. Inclusion of solvation effects leads also to changes on the molecular orbital energies (Table 2). In solution, HOMO and LUMO are destabilized, with respect to the corresponding values in a vacuum. A good relationship exists between frontier orbitals energies and polarity of solvents:

$$E(\text{HOMO}) = -5 \times 10^{-4} \varepsilon - 0.248; R^2 = 0.988$$
$$E(\text{LUMO}) = 5 \times 10^{-2} \varepsilon - 0.088; R^2 = 0.972$$

Also, HOMO-LUMO gap of $C_{20}\ldots Si_2H_2$ molecule in solution phase is more than that of gas phase. A good relationship exists between HOMO-LUMO gap and polarity of solvents:

$$\text{Gap} = 0.002 \varepsilon + 4.352; R^2 = 0.981$$

The variations in this property may be illustrated by considering the fact that neutral or charged species enhance their effective radii in solution phase. This signifies that the electrostatic potential q/r will forever diminish from gas phase to solution phase. As a result, solvated species will reduce their effective hardness and subsequently, and become softer in the solution phase [61].

The frontier orbitals distribution of $C_{20}\ldots Si_2H_2$ molecule is plotted in Fig. 1. Fig. 1 presents the HOMO and LUMO are distributed mainly on C_{20}. Percentage composition in terms of the defined groups of frontier orbitals illustrates the largest contributions of HOMO and LUMO arise from cage (97.0% and 89.0%, respectively).

Thermodynamic parameters

Absolute free energy and enthalpy values of studding $C_{20}\ldots Si_2H_2$ molecule are reported in Table 3. The solvation free energy and enthalpy values are computed via the following equation:

$$\Delta X_{\text{solv}} = X_{\text{solv}} - X_{\text{gas}}; X=G, H$$

Table 3 reports that the amount of ΔG_{solv} and

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$r(\text{SiSi})$</th>
<th>$r(\text{SiC})$</th>
<th>$E(\text{HOMO})$</th>
<th>$E(\text{LUMO})$</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>2.1321</td>
<td>1.9127</td>
<td>-0.2488</td>
<td>-0.0908</td>
<td>4.300</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>2.1328</td>
<td>1.9147</td>
<td>-0.2485</td>
<td>-0.0881</td>
<td>4.365</td>
</tr>
<tr>
<td>THF</td>
<td>2.1329</td>
<td>1.9149</td>
<td>-0.2486</td>
<td>-0.0880</td>
<td>4.370</td>
</tr>
<tr>
<td>DiMethylDiSulfide</td>
<td>2.1330</td>
<td>1.9150</td>
<td>-0.2487</td>
<td>-0.0879</td>
<td>4.376</td>
</tr>
<tr>
<td>DiChloroEthane</td>
<td>2.1331</td>
<td>1.9152</td>
<td>-0.2488</td>
<td>-0.0878</td>
<td>4.381</td>
</tr>
</tbody>
</table>

Table 2. Si-Si, Si-c bond lengths (in Å), frontier orbital energies (in eV), HOMO-LUMO- gap (in eV), values of $C_{20}\ldots Si_2H_2$ molecule in gas and solution phases in M06-2X/6-311+G(d,p) level of theory.
The first theoretical treatment of the solvent-induced stretching frequency shifts was given by Kirkwood–Bauer–Magat equation (KBM) and is shown through the following equation[62]:

\[
\frac{v_{\text{gas}} - v_{\text{solution}}}{v_{\text{gas}}} = \frac{\Delta v}{v_{\text{gas}}} = \frac{C(\epsilon - 1)}{(2\epsilon + 1)}
\]

Where \(v_{\text{gas}} \) is the vibrational frequency of a solute in the gas phase, \(v_{\text{solution}} \) is the frequency of a solute in the solvent, \(\epsilon \) is the dielectric constant of the solvent and \(C \) is a constant depending on the dimensions and electrical properties of the vibrating solute dipole.

It can be observed that solvent-induced stretching vibrational frequency shifts on the base of KBM equation, have a good linear relationship:

For symmetric stretching of Si-H bonds:

\[
\frac{\Delta v}{v_{\text{gas}}} = 0.014(\epsilon - 1) + 0.002; \quad R^2 = 0.999
\]

and for, asymmetric stretching of Si-H bonds:

\[
\frac{\Delta v}{v_{\text{gas}}} = 0.014(\epsilon - 1) + 0.002; \quad R^2 = 0.999
\]

Vibrational analysis

Table 4 reports the wavenumbers of IR-active, symmetric and asymmetric stretching vibrations of Si-H groups of \(\text{C}_{20} \cdots \text{SiH}_2 \) molecules in gas and solution phases. It can be seen that these values are greater in solution phase rather than gas phase. On the other hand, \(\nu(\text{SiH}) \) values have increased with increasing of dielectric constant of solvents.

Table 3. Thermochemical parameters of interaction between \(\text{C}_{20} \) and \(\text{SiH}_2 \) molecule in gas and solution phases M06-2X/6-311++G(d,p) level of theory.

<table>
<thead>
<tr>
<th>X</th>
<th>G(a.u)</th>
<th>H(a.u)</th>
<th>S(cal/mol.K)</th>
<th>(\Delta G_{\text{solv}})(kcal/mol)</th>
<th>(\Delta H_{\text{solv}})(kcal/mol)</th>
<th>(\Delta S_{\text{solv}})(cal/mol.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chloroform</td>
<td>-1341.4335</td>
<td>-1341.3849</td>
<td>102.101</td>
<td>-2.27</td>
<td>-2.27</td>
<td>-25.00</td>
</tr>
<tr>
<td>chlorobenzene</td>
<td>-1341.4337</td>
<td>-1341.3852</td>
<td>102.103</td>
<td>-2.45</td>
<td>-2.46</td>
<td>-23.00</td>
</tr>
<tr>
<td>THF</td>
<td>-1341.4341</td>
<td>-1341.3856</td>
<td>102.105</td>
<td>-2.67</td>
<td>-2.67</td>
<td>-21.00</td>
</tr>
<tr>
<td>DiMethylDiSulfide</td>
<td>-1341.4344</td>
<td>-1341.3859</td>
<td>102.108</td>
<td>-2.84</td>
<td>-2.85</td>
<td>-18.00</td>
</tr>
<tr>
<td>DiChloroEthane</td>
<td>-1341.4344</td>
<td>-1341.3859</td>
<td>102.108</td>
<td>-2.88</td>
<td>-2.88</td>
<td>-18.00</td>
</tr>
</tbody>
</table>

Table 4. The wave-numbers of IR-active symmetric and asymmetric stretching vibrations of Si-H (in cm\(^{-1}\)) and \(^{29}\)Si NMR chemical shifts (in ppm, respect to TMS) of \(\text{C}_{20} \cdots \text{SiH}_2 \) molecule in gas and solution phases in M06-2X/6-311++G(d,p) level of theory.

<table>
<thead>
<tr>
<th>X</th>
<th>(\nu_{\text{ asym}})</th>
<th>(\nu_{\text{ sym}})</th>
<th>(\delta(\text{Si}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas</td>
<td>2266.02</td>
<td>2272.53</td>
<td>157.64</td>
</tr>
<tr>
<td>chloroform</td>
<td>2276.32</td>
<td>2283.06</td>
<td>150.77</td>
</tr>
<tr>
<td>chlorobenzene</td>
<td>2277.04</td>
<td>2283.82</td>
<td>150.78</td>
</tr>
<tr>
<td>THF</td>
<td>2277.89</td>
<td>2284.70</td>
<td>150.80</td>
</tr>
<tr>
<td>DiMethylDiSulfide</td>
<td>2278.55</td>
<td>2285.40</td>
<td>150.83</td>
</tr>
<tr>
<td>DiChloroEthane</td>
<td>2278.67</td>
<td>2285.52</td>
<td>150.83</td>
</tr>
</tbody>
</table>

\[\Delta H_{\text{gas}} \] of \(\text{C}_{20} \cdots \text{SiH}_2 \) molecule decrease with heightening the dielectric constant. There is a good relationship between \(\Delta G_{\text{solv}} \) and \(\Delta H_{\text{solv}} \) with dielectric constant values:

\[
\Delta G_{\text{solv}} = -0.109 \epsilon - 1.795; \quad R^2 = 0.979
\]

\[
\Delta H_{\text{solv}} = -0.108 \epsilon - 1.805; \quad R^2 = 0.979
\]

There is a good relationship between \(\Delta G_{\text{solv}} \) and dipole moment values:

\[
\mu = -1.17 \Delta G_{\text{solv}} + 5.117; \quad R^2 = 1
\]

Consequently, more polar solvents, the increase in dipole moment of \(\text{C}_{20} \cdots \text{SiH}_2 \) molecule influences its interaction with the solvent.
KBM equation only takes into account the solvent dielectric constants. The frequency shifts depend on the solvent dielectric constant.

$\delta^{(29)Si} = 0.011 \epsilon + 150.7; \quad R^2 = 0.998$

Dependency of the chemical shift values of Si atom in the C$_{20}$...Si$_2$H$_2$ versus ($\epsilon - 1$)/(2$\epsilon + 1$) of KBM equation exhibits a linear relationship between these chemical shift values and KBM parameters. These equations are as follows:

$\delta^{(29)Si} = -0.005(\epsilon-1)/(2\epsilon+1) + 0.045; \quad R^2 = 0.976$

CONCLUSION

Theoretical investigation of the interaction of C$_{20}$ and Si$_2$H$_2$ molecules at the M06-2X/6-311++G(d,p) level of theory in gas solution phases shows that the interaction energy values increase from vacuum to different solvents and interaction between C$_{20}$ and Si$_2$H$_2$ increases with increasing of dielectric constant of solvents. Solvation energy values indicate the increasing of stability of title complex in more polar solvents. The energy decomposition analysis (EDA) explored the significant interaction between C$_{20}$ and Si$_2$H$_2$ in C$_{20}$... Si$_2$H$_2$ molecule (E=98.78 kcal/mol). On the other hand, the polarization energy stabilized adduct, although the sum of electrostatic and exchanging energy destabilized the C$_{20}$... Si$_2$H$_2$ molecule. Also, our calculations showed the good relationship between chemical shift values of 29Si NMR, IR-active symmetric and asymmetric stretching vibrations of Si-H groups and KBM solvent parameters.

REFERENCES

18. Fischer RC, Power PP. π-Bonding and the Lone Pair Effect in

21. Takeuchi K, Ichinohe M, Sekiguchi A. Reactivity of the Disilene RSi=SiR (R = SiPt(THF)2) toward Silicyanide: Two Pathways To Form the Bis-Adduct [RSiSi(NCSiMe3)2] with Some Silaketenimine Character and a 1,4-Diaza-2,3-disilabenzen Analogue. Journal of the American Chemical Society. 2008;130(50):16648-9.

22. Cui C, Ohnmetal MM, Fettinger JC, Spikes GH, Power PP. Reactions of the Heavier Group 14 Element Alkyne Analogues Ar’EEAr’ (Ar’ = C6H3-2,6(3-C6H3-2,6-Pr2)2; E = Ge, Sn) with Unsaturation Molecules: Probing the Character of the EE Multiple Bonds. Journal of the American Chemical Society. 2005;127(49):17330-41.

