Nanophotocatalytic Desulfurization of Hydrophane 10 Base Oil of Tehran Refinery

Document Type: Original Research Paper

Author

Department of Chemistry, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

10.22034/jna.2019.581136.1126

Abstract

Sulfur-containing compounds are one of the most important oil pollutants. Environmental pollutions, because of hazards on human health, corrosion in pipelines, and other refinery and installments necessitate sulfur removal. In this research, Ni(8%)/TiO2/Zeolite NaX nanophotocatalyst was synthesized and evaluated as a desulfurizer catalyst from hydrophane 10 base oil. Various tests including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDXA), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and BET/BJH were used to evaluate the photocatalyst synthesis process. Initially, using Design of Experiment (DOE) technique, optimum influential parameters were predicted, and 2D plus 3D diagrams were plotted. Then, 50 ml of oil containing 3782 ppm total sulfur, 0.6 g catalyst, 0.8 g adsorbent, and 3 h contact time were able to remove 20% of sulfur when exposed to the visible light. Sulfur was measured at all steps using inductively coupled plasma (ICP) technique. The final results suggested that the nanophotocatalytic process is a feasible way when compared to difficult and complicated steps with harder conditions.

Keywords