Response surface methodology analysis of the photocatalytic removal of Methylene Blue using a new Cu(II)-MOF

Document Type: Original Research Paper


1 Chemistry Department, Sciences Faculty, Arak Branch, Islamic Azad University,Arak, Iran

2 Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

3 chemistry Department, Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 chemistry Department, Science Faculty, Arak Branch, Islamic Azad University, Arak, IRAN



A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L= 4, 4′-diamino diphenyl sulfone), has been synthesized conventionally and hydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEM techniques. The results MOFs were applied for photodegradation of Methylene Blue (MB). The influence of affecting variables, such as initial MB dye concentration (2–8mg L−1), Cu(II)-MOF mass (0.01–0.03 mg), pH (3.0–9.0), and time of irradiation (30–90 min). The photocatalytic degradation efficiency was investigated by the central composite design (CCD) methodology. The results of CCD analysis for optimum values of variables revealed that Cu(II)-MOF mass was 0.025g, the initial concentration of MB was 3.51 mg L−1, pH was 4.50 and irradiation time was 75 min.Under the optimum conditions, the photocatalytic MB degradation percentage at the desirability function value of 1.0 was found to be 70%. In addition, the obtained R2 value of 0.97 in the regression analysis showed a high photocatalytic efficiency of the proposed method for MB degradation.